Multilevel Models for Hierarchical Data

May 29-31, 2024
10:00 am – 3:30 pm (Eastern US time)
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Software Demonstrations: R, SPSS, SAS, and Stata
Evergreen Content: Materials Continually Updated

Student: $594
Professional: $774

-
+
Category: Livestream, Workshops

Multilevel Models for Hierarchical Data is a three-day workshop focused on the application and interpretation of multilevel models, also known as hierarchical linear models and mixed models, for the analysis of hierarchical data. Hierarchical data structures arises from sampling units at multiple levels, wherein lower-level units are nested within higher-level units. Common instances are students nested within schools, siblings nested within families, patients nested within therapists, and adults nested within communities. Analyzing such data using traditional general linear models (e.g., ANOVA or regression) is flawed, oftentimes substantially so. Not only are tests of significance likely biased, but many important within-group and between-group relations cannot be evaluated. All of these limitations can be addressed within the multilevel model. In this workshop we provide a comprehensive exploration of multilevel models for hierarchical data, with practical guidance on how to apply these in your own work.

Note: This workshop is a shorter version of our previous 5-day Multilevel Modeling workshop, which included coverage of both hierarchical and longitudinal data structures. The current workshop focuses specifically on hierarchical data structures.  For those who may be interested, we now also offer a new 4-day workshop, Multilevel Models for Longitudinal Data, that provides a more thorough treatment of the application of these models with repeated measures data.

Instructors

Daniel J. Bauer, Ph.D.

Dan Bauer is a Professor and the Director of the L.L. Thurstone Psychometric Laboratory in the Department of Psychology and Neuroscience at the University of North Carolina. He teaches primarily graduate-level courses in statistical methods, for which he has won multiple teaching awards. Read More

Patrick J. Curran, Ph.D.

Patrick Curran is a Professor in the L.L. Thurstone Psychometric Laboratory in the Department of Psychology and Neuroscience at the University of North Carolina at Chapel Hill. He is dedicated to teaching and disseminating advanced quantitative methods and has won multiple awards for teaching excellence. Read More

Workshop Details

Reviews

Thank you for such an amazing workshop! I learned so much and cannot wait to dig into my dissertation data!

The concepts and practical applications are hard for me, but in this class I really felt like I’ve had some Eureka moments. It really came together for me. I think that speaks to both of your teaching abilities, the format of the class, and the organization of the materials. I love the dynamic between you two and your teaching styles complement each other well. I had a blast, a really good time, and loved it.

Everything is a strength -- balance between lecture/practical, the pace at which the material is delivered, the course material/resources, etc. Really just everything.

The workshop does a great job of explaining MLM on a conceptual level and provides useful examples to better understand the modeling. The instructors were great at teaching the material and were very open to answering questions.

This workshop strikes a perfect balance between theory and practical applications. I particularly appreciated this as my MLM grad class was several years ago, so this was a refresher and an extension now that I have the data to actually analyze.

Quick Navigation

Livestream Workshops

Free Introduction to Structural Equation Modeling

May 8-10, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Free Introduction to Structural Equation Modeling

Latent Curve Modeling

May 22-24, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Latent Curve Modeling

Machine Learning for Classification Problems

June 3-5, 2024
Instructor: Doug Steinley
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Machine Learning for Classification Problems

Multilevel Models for Longitudinal Data

June 3-6, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Multilevel Models for Longitudinal Data

Introduction to Mixture Modeling and Latent Class Analysis

June 10-11, 2024
Instructor: Dan Bauer
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Introduction to Mixture Modeling and Latent Class Analysis

Analyzing Intensive Longitudinal Data

June 10-14, 2024
Instructors: JP Laurenceau & Niall Bolger
Lecture Recordings: Lifetime Access

Read More about Analyzing Intensive Longitudinal Data

Modern Missing Data Analysis

June 12-14, 2024
Instructor: Craig Enders
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Modern Missing Data Analysis