Introduction to Mixture Modeling and Latent Class Analysis

June 10-11, 2024
10:00 am – 4:00 pm (Eastern US time)
Instructor: Dan Bauer
Lecture Recordings: Lifetime Access
Software Demonstrations: Mplus and R
Evergreen Content: Materials Continually Updated

Student: $396
Professional: $516

-
+
Category: Livestream, Workshops

Introduction to Mixture Modeling and Latent Class Analysis is a two-day workshop focused on the application and interpretation of statistical techniques designed to identify subgroups within a heterogeneous population, including latent class analysis, latent profile analysis, and other finite mixture models. In practice, these methods are often implemented with the goal of identifying theoretically distinct subgroups (e.g., people with a liability for schizophrenia versus those without). Alternatively, they can be used as a data reduction device, to summarize prototypical patterns when working with complex multivariate data (e.g., market segmentation in consumer research). In this workshop we provide a comprehensive exploration of the foundations and uses of latent class/profile analysis and finite mixture models.

Note: This workshop is a shorter version of the 5-day Mixture Modeling and Latent Class Analysis workshop which is currently available for self-paced access. Among other things, the longer workshop includes additional material on (1) multi-step approaches for examining how latent classes relate to external or "auxiliary" variables, e.g., predictors of class membership or distal outcomes predicted by latent class; and (2) longitudinal applications of mixture models, e.g., growth mixture models. Participants seeking in depth treatment of these additional topics may prefer to enroll in the longer workshop.

Instructor

Daniel J. Bauer, Ph.D.

Dan Bauer is a Professor and the Director of the L.L. Thurstone Psychometric Laboratory in the Department of Psychology and Neuroscience at the University of North Carolina. He teaches primarily graduate-level courses in statistical methods, for which he has won multiple teaching awards. Read More

Workshop Details

Reviews

Despite the common challenges of the online format, it was a very engaging course, easy to follow and very practice-oriented to provide the required skills to implement the analyses independently afterwards. I would highly recommend this course!

The lecture approach of presenting material followed by examples/demonstrations was helpful, as was having the live Q&A going simultaneously to allow for questions as the material was presented.     

The topics are explained very thoroughly, with historical context, multiple examples, pros and cons of the approaches, and strategies to address potential problems  

As a developmental psychologist, I appreciated all the examples presented in class.

I really enjoyed the pace of the course, the fact that we are able to re-watch the videos, and the demonstrations... I also appreciate the incredibly helpful details provided in the supporting materials.

I would highly recommend it! I really appreciated the balance between theory and application and that syntax files were provided so that we have them to build off of for our own analyses.

Good experience and very clear — very responsive to questions and mindful of a range of statistical expertise.

I love in person trainings, but travel can be hard, and expensive (especially as a grad student). The online format is so accessible, plus having access to recordings! And I really feel like y'all do an excellent job of making the sessions engaging.

Quick Navigation

Livestream Workshops

Free Introduction to Structural Equation Modeling

May 8-10, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Free Introduction to Structural Equation Modeling

Latent Curve Modeling

May 22-24, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Latent Curve Modeling

Multilevel Models for Hierarchical Data

May 29-31, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Multilevel Models for Hierarchical Data

Machine Learning for Classification Problems

June 3-5, 2024
Instructor: Doug Steinley
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Machine Learning for Classification Problems

Multilevel Models for Longitudinal Data

June 3-6, 2024
Instructors: Dan Bauer & Patrick Curran
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Multilevel Models for Longitudinal Data

Analyzing Intensive Longitudinal Data

June 10-14, 2024
Instructors: JP Laurenceau & Niall Bolger
Lecture Recordings: Lifetime Access

Read More about Analyzing Intensive Longitudinal Data

Modern Missing Data Analysis

June 12-14, 2024
Instructor: Craig Enders
Lecture Recordings: Lifetime Access
Evergreen Content: Materials Continually Updated

Read More about Modern Missing Data Analysis