# Why use a Structural Equation Model?

In this edition of CBA Office Hours, Dan discusses some of the principal advantages of the structural equation model (SEM) relative to more traditional data analytic approaches like the linear regression model. Advantages include the ability to account for measurement error when estimating effects, test the fit of the model to the data, and specify statistical models that more closely align with theory. Dan describes these advantages with an example on factors that relate to children’s popularity with peers. We consider these issues and various extensions of the SEM (such as longitudinal applications, ways of formally testing mediation and moderation, and evaluating invariance of effects across groups both known and unobserved) in greater detail in other posts on SEM and in our summer training workshops.

## What’s the best way to determine the number of latent classes in a finite mixture analysis?

Selecting the number of classes (or components) is one of the most challenging decisions to make when fitting a finite mixture model (including latent class analysis and latent profile analysis). In this post, we talk through the conventional wisdom on class enumeration, as well as when this breaks down.

## What exactly qualifies as intensive longitudinal data and why am I not able to use more traditional growth models to study stability and change over time?

This post considers the unique features of intensive longitudinal data (ILD) relative to other more traditional data structures and how we can appropriately analyze ILD given these features

## I fit a multilevel model and got the warning message “G Matrix is Non-Positive Definite.” What does this mean and what should I do about it?

Received the cryptic warning message “G matrix is non-positive definite”? Learn what this means and what to do about it.

## I’m reporting within- and between-group effects in from a multilevel model, and my reviewer says I need to address “sampling error” in the group means. What does this mean, and what can I do to address this?

Why between-group effects estimating in MLMs are sometimes biased, and what to do about it

## My advisor told me to use principal components analysis to examine the structure of my items and compute scale scores, but I was taught not to use it because it is not a “true” factor analysis. Help!

We explain the difference between principal components analysis and exploratory factor analysis