# Growth Models with Time-Varying Covariates

In a prior episode of Office Hours, Patrick discussed predicting growth by time-invariant covariates (TICs), predictors for which the numerical values are constant over time. In this episode, Patrick describes the inclusion of time-varying covariates (TVCs), predictors with numerical values that can differ across time. Examples of TVCs are numerous and include time-specific measures of depression, anxiety, substance use, marital status, onset of diagnosis, or dropout from treatment, among many others. When TICs are included in a growth model, the time-invariant predictors are used to directly predict the growth factors (e.g., intercept, slope). In contrast, when TVCs are included in a growth model, the effects of the time-varying predictors bypass the growth factors and directly influence the repeated measures. There are many ways that TVC influences can be included in the model, and models can be further extended to include both TICs and TVCs simultaneously. Patrick works through a hypothetical example and concludes with a summary of strengths and limitations of these models.

To see all episodes in this series, see our Growth Modeling playlist on YouTube.

## I fit a multilevel model and got the warning message “G Matrix is Non-Positive Definite.” What does this mean and what should I do about it?

Received the cryptic warning message “G matrix is non-positive definite”? Learn what this means and what to do about it.

## My advisor told me to use principal components analysis to examine the structure of my items and compute scale scores, but I was taught not to use it because it is not a “true” factor analysis. Help!

We explain the difference between principal components analysis and exploratory factor analysis

## My advisor told me I should group-mean center my predictors in my multilevel model because it might “make my effects significant” but this doesn’t seem right to me. What exactly is involved in centering predictors within the multilevel model?

How to specify multilevel models to obtain within- and between-group effects through centering lower-level predictors.

## I’m reporting within- and between-group effects in from a multilevel model, and my reviewer says I need to address “sampling error” in the group means. What does this mean, and what can I do to address this?

Why between-group effects estimating in MLMs are sometimes biased, and what to do about it

## What’s the best way to determine the number of latent classes in a finite mixture analysis?

Selecting the number of classes (or components) is one of the most challenging decisions to make when fitting a finite mixture model (including latent class analysis and latent profile analysis). In this post, we talk through the conventional wisdom on class enumeration, as well as when this breaks down.