Machine Learning: Theory and Applications

Replay Access: Expires 1 year after purchase
Original Livestream:
May 16-20, 2022
Instructor: Doug Steinley

Student: $795
Professional: $995

Category: Asynchronous, Workshops

Machine Learning is a five-day workshop focused on the application and interpretation of both traditional and next-generation machine learning (also statistical learning) approaches. One of the fastest growing areas of statistics and data analysis, machine learning applications have increased rapidly within the psychological, health, and social sciences. These techniques are applied with the goal of producing robust models for predictions (continuous outcomes) or classifications (categorical outcomes), and focus on achieving high accuracy rather than testing null hypothesis or statistical significance. This workshop provides participants with the understanding and practical tools to choose between machine learning techniques and use these with confidence.

The workshop begins with common, fundamental models that are widely used, such as regression and logistic regression, and uses these to introduce and understand more advanced approaches such as regularization, splines, support vector machines, classification trees, and discriminant analysis.  Along the way, a comprehensive approach to assessing model fit and protecting against overfitting will be developed.  Finally, this workshop will also delve into the tension between “prediction” and “inference” and explores the implications for common research applications.

Video About Class

Ethan McCormick interviews Doug Steinley about the class (in advance of 2021 offering) in the video below.

Instructor

Doug Steinley, Ph.D.

Doug Steinley is a Professor in the Department of Psychology at the University of Missouri. His research and teaching focus on multivariate statistical methodology, with a primary interest in cluster analysis (both traditional procedures and more modern mixture modeling techniques) and social network analysis. Read More

Workshop Details

Reviews

Although this will be the first offering of Machine Learning with our organization, Doug received strong reviews when teaching the class in the fall at the University of Missouri:

Doug was very knowledgeable about the material. He was very open to questions and let the students direct what topics where talked about more.

I really liked that you recorded the lectures. That was helpful. Also, I think your class really translated to zoom well. Also, this sounds silly, but you're really good at using features of zoom like drawing on the slides and that was super helpful.

Doug was very energetic and very knowledgeable about the subject matter. Doug has a warm and charismatic personality, and even though statistics aren't my strong suit, I enjoyed this course! He made the material much more engaging, compelling, and interesting than I thought possible. Also, he was very good at addressing student questions and being very open with communication throughout the class.

Doug was clear with his examples and was clearly knowledgeable on the topic. This class is theory-heavy, but he explained concepts and theoretical approaches with depth and clarity and was always open to additional questions. He clearly put effort into building students' knowledge and provided an open and non-judgmental environment for us.

Doug's classes are always enjoyable. He's knowledgeable and makes the material accessible. Doug is very approachable, and will answer questions pretty easily

Quick Navigation

Asynchronous Workshops

Free Introduction to Structural Equation Modeling

Replay Access: 1 year
Recorded: May 11-13, 2022
Instructors: Dan Bauer & Patrick Curran

Read More

Causal Inference

Replay Access: 1 year
Recorded: December 15-17, 2021
Instructor: Doug Steinley

Read More

Network Analysis

Replay Access: 1 year
Recorded: June 6-10, 2022
Instructor: Doug Steinley

Read More

Multilevel Modeling

Replay Access: 1 year
Recorded: June 6-10, 2022
Instructors: Dan Bauer & Patrick Curran

Read More

Latent Class/Cluster Analysis and Mixture Modeling

Replay Access: 1 year
Recorded: May 23-27, 2022
Instructors: Dan Bauer & Doug Steinley

Read More

Applied Measurement Modeling

Replay Access: 1 year
Recorded: May 23-27, 2022
Instructors: Patrick Curran & Greg Hancock

Read More

Applied Research Design Using Mixed Methods

Replay Access: 1 year
Recorded: June 3-4, 2021
Instructor: Greg Guest

Read More

Introduction to Data Visualization in R

Replay Access: 1 year
Recorded: May 31-June 3, 2022
Instructor: Michael Hallquist

Read More

Longitudinal Structural Equation Modeling

Replay Access: 1 year
Recorded: May 16-20, 2022
Instructors: Dan Bauer & Patrick Curran

Read More

Modern Missing Data Analysis

Replay Access: 1 year
Recorded: June 1-3, 2022
Instructor: Craig Enders

Read More

Applied Qualitative Research

Replay Access: 1 year
Recorded: May 30-June 3, 2022
Instructors: Greg Guest & Emily Namey

Read More

Introduction to Quantitative Meta-Analysis

Replay Access: 1 year
Recorded: June 15-18, 2021
Instructor: Tasha Beretvas

Read More

Analyzing Intensive Longitudinal Data

Replay Access: 1 year
Recorded: June 13-17, 2022
Instructors: JP Laurenceau & Niall Bolger

Read More