Introduction to Data Visualization in R
Length: 16 hours
Instructor: Michael Hallquist
Software Demonstrations: R, of course
Lifetime Access: No expirations
Student: $792
Professional: $1032
Introduction to Data Visualization in R focuses on three major topics: 1) theories of graphical design and perception; 2) how to translate these theories to create figures that are informative, clear, and compelling; and 3) using flexible tools in R (especially ggplot2) both for rapid data visualization and creation of publication-quality figures. Relative to other introductory courses on data visualization in R, this workshop emphasizes the principles of graphical perception and teaches you to categorize figures according to a set of graphical idioms that are best suited for different purposes. Throughout the workshop, we will use published figures in the social and behavioral sciences to illustrate both good and bad applications of design and visualization principles. You will also learn how to use the outstanding data visualization tools available in R, culminating in a full walkthrough of a highly communicative figure with custom annotations.
Instructor
Michael N. Hallquist, Ph.D.
Michael Hallquist is an Associate Professor in the Department of Psychology and Neuroscience at the University of North Carolina at Chapel Hill. He is a core faculty member in both the Clinical Psychology program and the L. L. Thurstone Psychometric Laboratory. Read More
Workshop Details
Reviews
So useful and practical in terms of data wrangling and visualization! The content was immensely useful and I learned a lot about not just R but good data storage/wrangling practices, on top of good visualization rules to keep in mind. I loved this class!
Michael's presentations were engaging and interesting. The content helped me think more critically and visually about my own research, which has already benefitted my work.
One of the most helpful parts of this class to me was having Michael walk through R code/syntax as it related to data visualization skills and topics we covered in class.
Quick Navigation
Self-Paced Workshops
Free Introduction to Structural Equation Modeling
Instructors: Dan Bauer & Patrick Curran
16 hours
Latent Curve Modeling
Instructors: Dan Bauer & Patrick Curran
12 hours
Longitudinal Structural Equation Modeling
Instructors: Dan Bauer & Patrick Curran
20 hours
Multilevel Models for Longitudinal Data
Instructors: Dan Bauer & Patrick Curran
16 hours
Multilevel Models for Hierarchical Data
Instructors: Dan Bauer & Patrick Curran
12 hours
Modern Missing Data Analysis
Instructor: Craig Enders
12 hours
Mixture Modeling and Latent Class Analysis
Instructors: Dan Bauer & Doug Steinley
20 hours
Applied Measurement Modeling
Instructors: Patrick Curran & Greg Hancock
16 hours
Applied Qualitative Research
Instructors: Greg Guest & Emily Namey
20 hours
Machine Learning for Classification Problems
Instructor: Doug Steinley
12 hours
Machine Learning: Theory and Applications
Instructor: Doug Steinley
20 hours
Introduction to Sample Size Planning for Statistical Power
Instructor: Samantha Anderson
9 hours
Applied Research Design Using Mixed Methods
Instructor: Greg Guest
8 hours
Introduction to Quantitative Meta-Analysis
Instructor: Tasha Beretvas
16 hours
Analyzing Intensive Longitudinal Data
Instructors: J-P Laurenceau & Niall Bolger
20 hours